Verkehrsuntersuchung

zum Bebauungsplan Nr. 32 "Vennhof" in Roetgen

Aktualisierung im Dezember 2021

Inhaltsverzeichnis

1.	Aufgabenstellung	3
2.	Verkehrsbelastungen im Umfeld des geplanten Vorhabens – Istzustand	7
3.	Prognose-Nullfall	8
3.1	Allgemeine Belastungsveränderung	8
3.2	Leistungsfähigkeitsbetrachtung – Prognose-Nullfall	10
4.	Prognose-Planfall	12
4.1	Ermittlung des zukünftigen Verkehrsaufkommens	12
4.2	Ermittlung der zukünftigen Verkehrsverflechtungen	17
4.3	Überlagerung des Prognose-Nullfalls mit den Verkehren des Bauvorhabens	18
4.4	Leistungsfähigkeitsbetrachtung – Prognose-Planfall	20
5.	Fazit	21
6.	Anhang	22

 $20211221_rve_bericht_vu_roetgen_vennhof-erweiterung_aktualisierung_v7.docx$

1. Aufgabenstellung

Die ISR – Innovative Stadt und Raumplanung GmbH, Haan ist im Auftrag des Bauherren Plum mit der Aufstellung des Bebauungsplanes Nr. 32 "Vennhof" in der Gemeinde Roetgen zur Erweiterung des bestehenden Vennhofs betraut. Hierzu wurde im Jahr 2019 – auf Grundlage des damaligen Entwurfes – eine entsprechende Verkehrsuntersuchung in unserem Hause durchgeführt. Diese Verkehrsuntersuchung wurde im Mai 2020 auf Grund eines überarbeiteten Entwurfs für die Erweiterung des Vennhofs und verschiedene Entwicklungen in Bezug auf die Gemeinde Roetgen (u.a. Bebauungsplan Nr. 34 "Faulenbruchstraße Süd") aktualisiert.

Im Zuge der Aufstellung des Bebauungsplans werden nun folgende, weitere Änderungen gegenüber den Ansätzen in der Verkehrsuntersuchung aus dem Mai 2020 vorgenommen:

Gegenstand der Verkehrsuntersuchung aus dem Mai 2020 war die vorausgegangene Nutzungsverteilung, welche auch eine Einzelhandelsnutzung von bis zu zusätzlich 1.200 m² BGF vorsah. Dieser Planungsansatz hat sich im Herbst 2020 geändert, die Einzelhandelsnutzung wurde weitgehend als zulässige Nutzung aus dem in Aufstellung befindlichen Bebauungsplan herausgenommen. Somit wurde im Oktober 2020 eine zusätzliche verkehrstechnische Stellungnahme zum geänderten Nutzungskonzept erstellt. Diese zeigt auf, dass bei den geänderten Nutzungsansätzen (Gastronomie anstatt Einzelhandel) die Verkehre in Summe nicht zunehmen und die Ergebnisse der bisherigen Verkehrsuntersuchung weiterhin berücksichtigt werden können. Demnach stellt die Verkehrsuntersuchung aus dem Mai 2020 auf Grund der damals einbezogenen stärkeren Einzelhandelsnutzung eine Art Worst-Case-Betrachtung dar.

Im Januar 2021 wurde das Nutzungskonzept aufgrund der Einbringung der Politik nochmals überprüft und geändert. Im Bebauungsplan wurde daher konkretisierend eine horizontale Gliederung zu den zulässigen Nutzungen aufgenommen. Es wird im Bebauungsplan eine Wohnnutzung im Untergeschoss und Erdgeschoss ausgeschlossen. Hier sind gewerbliche Nutzungen vorzusehen. In dem 1. und 2. Obergeschoss sind Wohnungen geplant. Somit verschiebt sich das Nutzungskonzept, der Anteil gewerblicher Nutzungen nimmt gegenüber der vorausgegangenen Planung zu, der Anteil der Wohnflächen nimmt im gleichen Maße ab. Es wurden daher die gewerblichen Nutzungsansätze anhand der aktualisierten Planung erhöht. Hier wurden sowohl die publikumsintensiven als auch publikumsarmen Nutzungen (Büros / Praxen) deutlich erhöht. Der bereits hoch gegriffene Flächenansatz für die Gastronomie wurde beibe-

halten. Ebenso wurde aufgrund der Festsetzungen der Flächenanteil für Einzelhandelsnutzungen beibehalten. Als neue Nutzung wurden Lagerflächen (insbesondere im Untergeschoss) aufgenommen, welche der Investor beabsichtigt umzusetzen.

Ferner wurde aufgrund einer Stellungnahme sowie mehrerer Abstimmungstermine mit Straßen.NRW das bisher vorgesehene Erschließungskonzept verändert. Das Projekt soll nun ausschließlich über die drei heute bereits bestehenden Anbindungen an die B 258 und die Faulenbruchstraße erschlossen werden. Die bestehende Anbindung des Parkplatzes an die B 258 wird in diesem Zusammenhang durch eine eigenständige Linksabbiegespur von der B 258 auf den Parkplatz erweitert (vgl. Abbildung 1).

Abbildung 1: Konzept mit zusätzlicher Linksabbiegespur

Quelle: Ingenieurgruppe IVV GmbH & Co. KG

Es soll in der hier vorliegenden Verkehrsuntersuchung dargestellt werden, dass auch bei der aktuell geplanten Erweiterung des Vennhofs mit dem nun abgestimmten neunen Nutzungskonzept und dem geänderten Erschließungskonzept die Anbindung des bestehenden Parkplatzes des Vennhofs an die B 258 und der benachbarte Knoten B 258 / Faulenbruchstraße die auftretenden Verkehre leistungsgerecht und sicher abwickeln können.

Abbildung 2: Lage des Vennhofs in der Gemeinde Roetgen

Kartengrundlage: openstreetmap.org

Die Untersuchung ist unter Berücksichtigung der im Auftrag der Gemeinde Roetgen erstellten Untersuchungen, u. a. die "Machbarkeitsstudie zur baulichen Ausgestaltung des Knotenpunktes B 258 / Rosentalstraße in Roetgen" sowie einer weiteren für die Gemeinde erstellten Verkehrsuntersuchung zur B 258² durchzuführen.

Die Lage des Vennhofs in der Gemeinde Roetgen kann der Abbildung 2 entnommen werden. Der bestehende Vennhof (u.a. Bäckerei, Blumenladen, Parfümerie, Spielhalle, Wohnen, Büro und Arztpraxen) ist sowohl über die B 258 also auch die Faulenbruchstraße angebunden. Der nächstgelegenen Knotenpunkte ist der Knotenpunkt B 258 / Faulenbruchstraße, für den die

Machbarkeitsstudie zur baulichen Ausgestaltung des Knotenpunktes B 258 / Rosentalstraße in Roetgen, durchgeführt von der Ingenieurgruppe IVV GmbH & Co. KG im Auftrage der Gemeinde Roetgen, Aachen, 2012

Gesamtverkehrskonzept für den innerörtlichen Streckenabschnitt der B 258 in Roetgen, durchgeführt vom Büro Stadtverkehr im Auftrage der Gemeinde Roetgen, Hilden, 2017 (Verkehrserhebungen 2016)

Leistungsfähigkeit im Rahmen dieser Untersuchung betrachtet wird. Des Weiteren wird die Leistungsfähigkeit für die bestehende Anbindung B 258 / Zufahrt Parkplatz Vennhof betrachtet. Die Leistungsfähigkeit der Knotenpunkte / Anbindungen an der B 258 wird überprüft, um sicher zu stellen, dass durch die Erweiterung des Vennhofs keine Beeinträchtigungen für die B 258 zu erwarten sind.

2. Verkehrsbelastungen im Umfeld des geplanten Vorhabens – Istzustand

Um die heutige Verkehrssituation zu erfassen, wurde entsprechend den EVE 2012³ am 09.07.2019 eine Verkehrszählung in den beiden Stundengruppen 6:00 bis 10:00 Uhr und 15:00 bis 19:00 Uhr durchgeführt, bei der die abbiegescharfen Knotenströme an der bestehenden Anbindung B 258 / Zufahrt Parkplatz (Vennhof) ermittelt wurden. Die Fahrzeuge wurden nach Fahrzeugkategorien getrennt in 15-Minuten-Intervallen erfasst. Anschließend wurden die Daten ausgewertet, geprüft und grafisch aufbereitet. Die Ergebnisse der Erhebung der Vormittags- und Nachmittagsstundengruppe sind im Anhang 1 zusammengestellt.

Des Weiteren wurden die Abbiegebelastungen aus dem Jahr 2016 für den Knotenpunkt B 258 / Faulenbruchstraße aus einer für die Gemeinde Roetgen erstellten Verkehrsuntersuchung zur B 258 übernommen und anhand der aktuell erhobenen Belastungen für die B 258 angepasst. Die für die hier durchgeführte Verkehrsuntersuchung verwendeten Knotenstrombelastungen der maßgebenden Spitzenstunde am Vormittag und am Nachmittag sind für die Anbindung B 258 / Zufahrt Parkplatz (Vennhof) und den Knotenpunkt B 258 / Faulenbruchstraße im Anhang 1 dargestellt.

^{3 &}quot;Empfehlungen für Verkehrserhebungen"; Heft FGSV 125; Hrsg.: Forschungsgesellschaft für das Straßen- und Verkehrswesen (FGSV); Ausgabe 2012 (EVE – 2012)

3. Prognose-Nullfall

3.1 Allgemeine Belastungsveränderung

Für die allgemeine Verkehrsentwicklung in der Gemeinde Roetgen und im Umfeld werden zum einen die Verkehrsveränderungen infolge der Siedlungsentwicklung (u.a. B-Plan Nr. 34 "Faulenbruchstraße Süd") und zum anderen die Entwicklungen auf der B 258 einbezogen.

Die in der näheren Zukunft zu erwartende allgemeine Verkehrsentwicklung der Gemeinde Roetgen wird im Wesentlichen durch die Einwohner- und Beschäftigtenentwicklung definiert. Aus dem Kommunalprofil von IT.NRW (Stand 29.10.2020) für die Gemeinde Roetgen geht hervor, dass die Bevölkerung bis ins Jahr 2025 um ca. 1,6 % und bis in Jahr 2040 um ca. 4,8 % steigt⁴.

Um bei den Leistungsfähigkeitsbetrachtungen auf der "sicheren Seite" zu liegen, wurde eine allgemeine Verkehrszunahme von ca. 5 % parallel zu dem verwendeten Ansatz aus der Untersuchung "Gesamtverkehrskonzept für den innerörtlichen Streckenabschnitt der B 258 in Roetgen" berücksichtigt⁵. Dieser Zuwachs setzt auf den im Jahr 2019 durchgeführte Verkehrserhebung auf und berücksichtigt somit die aktuelle Bevölkerungsentwicklung in Roetgen bis zum Jahre 2019 sowie die aktuellen Verkehrszunahmen auf der B 258 bis zum Jahre 2019.

Des Weiteren wird die spezifische Entwicklung des Bebauungsplans Nr. 34 "Faulenbruchstraße Süd" und die damit zusätzlich ausgelöste Verkehrsbelastung berücksichtigt. Als Grundlage hierzu konnte auf die entsprechende Untersuchung zum B-Plan 34⁶ zurückgegriffen werden. Mit Hilfe der in der Schalltechnischen Untersuchung ausgewiesenen Frequentierung der Planstraße von 23 Pkw-Bewegungen pro Stunde tags und von 9 Pkw-Bewegungen pro Stunde nachts, wurde das Verkehrsaufkommen für den Tag von 440 Kfz / Tag⁷ (als Summe aus Quellund Zielverkehr) ermittelt. Voraussichtlich werden ca. 15 - 20 % der ausgelösten Kfz-Verkehre

⁴ Bevölkerungsentwicklung von 8.625 (2018) bis auf 8.762 (2025) bzw. 9.035 (2040)

Damit wird auch angenommen, dass die Durchgangsverkehre im Zuge der B 258 u.a. aus der Eifel (Simmerath, Monschau, Schleiden und Hellenthal) auf die gleiche Weise ansteigen. Im Vergleich zur Verkehrsentwicklung der letzten Jahre, die sich aus den Daten der Straßenverkehrszählung des Bundes (SVZ) für die B 258 ergibt, liegt dieser Ansatz auf der sicheren Seite.

Schalltechnische Untersuchung zum Bebauungsplanverfahren Nr. 34 "Faulenbruchstraße" der Gemeinde Roetgen; Hrsg.: Peutz Consult GmbH; Stand: 25.11.2019

Zusätzliche Verkehrsbelastungen in der Vormittagsspitzenstunde von ca. 29 Kfz/h und in der Nachmittagsspitzenstunde von ca. 34 Kfz/h. Zur Ableitung der Spitzenstundenwerte wurden Tagesganglinien aus dem Papier "Hinweise zur Schätzung des Verkehrsaufkommens von Gebietstypen; Hrsg.: FGSV; 2006; verwendet.

in Richtung Norden (Ortskern Roetgen) und ca. 80 - 85 % der Kfz-Verkehre in Richtung Süden zur B 258 verlaufen.

Auf Basis der erhobenen Verkehrsbelastungen für den Istzustand für die Vormittags- und Nachmittagsstundengruppen und den zuvor dargestellten Entwicklungen wurden die DTV-Belastungen (durchschnittlicher täglicher Verkehr aller Tage im Jahr) für den Prognose-Nullfall der Strecken durch Hochrechnung abgeleitet (vgl. Abbildung 3). Des Weiteren sind die aus dem DTV abgeleiteten, für die schalltechnische Untersuchung nach RLS-19 relevanten Kenngrößen M_T , p1 und p2 (mittlere stündliche Verkehrsstärke und Lkw-Anteil für den Tageszeitraum 6:00 - 22:00 Uhr) sowie M_N , p1 und p2 (mittlere stündliche Verkehrsstärke und Lkw-Anteil für den Nachtzeitraum 22:00 - 6:00 Uhr) dargestellt.

Verkehrliche Kenngrößen nach RLS-19

Prognose-0-Fall

Querschnitt	Von	Bis	DTV	M _T	M _N	p1 _⊤	p2 _⊤	p1 _N	p2 _N
Querschillt	VOII	Dis	[Kfz/Tag]	[Kfz/h]	[Kfz/h]	[%]	[%]	[%]	[%]
Zufahrt Parkplatz (Vennhof)	B 258		400	24	4	3	0	0	0
B 258	Faulenbruchstraße	Zufahrt Parkplatz (Vennhof)	16.900	1.016	81	3	1	5	2
Faulenbruchstraße	B 258	Zufahrt Parkplatz (Vennhof)	1.550	91	9	2	0	3	0
B 258	Grünepleistraße	Faulenbruchstraße	17.350	1.044	83	3	1	3	1
Pilgerbornstraße			250	14	2	1	0	6	0
Parkplatz Grillhaus			150	9	1	2	1	0	0
B 258	Wollwaschweg	Zufahrt Parkplatz (Vennhof)	17.200	1.033	82	3	1	5	2

Abbildung 3: Verkehrliche Kenngrößen nach RLS-19 – Prognose-Nullfall

3.2 Leistungsfähigkeitsbetrachtung – Prognose-Nullfall

Zur Überprüfung der Leistungsfähigkeit der bestehenden Knotenpunkte

- B 258 / Faulenbruchstraße
- B 258 / Zufahrt Parkplatz (Vennhof)

wurde aus den bei der Zählung erfassten Verkehrsmengen die maßgebende Spitzenstunde am Vormittag (07:00 bis 08:00 Uhr) und Nachmittag (16:00 bis 17:00 Uhr) ermittelt und mit der allgemeinen Verkehrsentwicklung überlagert (vgl. Anhang 2).

Die Leistungsfähigkeitsnachweise für die unsignalisierten Knotenpunkte wurde mit den von Prof. Schnabel vertriebenen Excel-Tools⁸, die die Vorgaben des HBS 2015 umsetzten, durchgeführt⁹. Es ermöglicht die Beurteilung der Leistungsfähigkeit und des Verkehrsflusses über die mittlere Wartezeit. Für die Berechnung werden die Zeitlücken gem. dem HBS 2015 gewählt. Die Beurteilung der Qualitätsstufen (QSV) erfolgt über die Wartezeitklassen gem. der Tabellen S5-1 bzw. L5-1 des HBS 2015.

QSV	А	В	С	D	E	F
mittlere Wartezeit [s]	≤ 10	≤ 20	≤ 30	≤ 45	> 45	Überlas- tung

Abbildung 4: Einstufung in Qualitätsstufen des Verkehrsablaufs an vorfahrtsgeregelten Knotenpunkten über die mittlere Wartezeit nach HBS 2015

Quelle: HBS 2015, gem. Kap. S 5.2.2

Der Leistungsfähigkeitsnachweis für den Knoten B 258 / Faulenbruchstraße mit den prognostizierten Verkehrsmengen für den Prognose-Nullfall zeigt, dass an diesem zukünftig in der nachmittäglichen Spitzenstunde Leistungsfähigkeitsdefizite zu erwarten sind. Dies betrifft die Verkehre aus der Faulenbruchstraße. Für die bei den prognostizierten Verkehrsmengen in der Nachmittagsspitzenstunde und dem vorhandenen Knotenausbau eine Qualitätsstufe (QSV) E ermittelt wird. Die Verkehre im Zuge der B 258 weisen eine Qualitätsstufe (QSV) A auf. Damit zeigt sich, dass für die B 258 keine Behinderungen auftreten.

HBS-Rechenprogramm – Knotenpunkte ohne Lichtsignalanlage; Hrsg.: Arbeitsgruppe Verkehrstechnik, Prof. Dr.-Ing. habil. W. Schnabel, Dresden (Stand: Mai 2016).

Darin werden neben den rechnerisch benötigten Werten für die Einzelströme auch die Zusammenfassung in Mischströmen berücksichtigt, wenn in einer Zufahrt Ströme gemeinsam in einer Mischspur abgewickelt werden

Für die Anbindung B 258 / Zufahrt Parkplatz (Vennhof) zeigen die Leistungsfähigkeitsnachweise für die beiden Spitzenstunden, dass dieser mit den prognostizierten Verkehrsmengen in die Qualitätsstufe (QSV) D und besser eingeordnet wird. Die Nachweise zeigen, dass die Anbindung auch bei den zukünftig zu erwartenden Verkehrsmengen im Prognose-Nullfall mit dem vorhandenen Knotenausbau in ausreichend leistungsfähiger Form betrieben werden kann. Die Verkehre im Zuge der B 258 werden an dieser Anbindung nicht behindert.

4. Prognose-Planfall

4.1 Ermittlung des zukünftigen Verkehrsaufkommens

Die durch die Erweiterung des Vennhofs in der Gemeinde Roetgen ausgelöste zusätzliche Verkehrsnachfrage wird unter Zuhilfenahme von Vergleichsdaten und unter Einbeziehung:

- von Vorgaben des Auftraggebers
- Kenndaten f
 ür verschiedene Mischgebiete¹⁰ sowie
- der "Hinwiese zur Schätzung des Verkehrsaufkommens von Gebietstypen" der FGSV¹¹

eingeschätzt.

Die Verkehrsnachfrageabschätzung für die Zusatzverkehre wurde auf der Grundlage des Bebauungsplanentwurfes, anhand der geplanten relevanten Strukturgrößen:

- Wohneinheiten (WE)
- Bruttogeschossfläche (BGF)

und unter Ansatz der jeweils spezifischen verkehrlichen Kenndaten:

- Wege- / Fahrtenvolumen am Tag
- Anwesenheitsgrad
- MIV-Nutzung / Pkw-Anteil
- Pkw-Besetzungsgrad und
- Originäraufkommen / Verbundeffekt¹²
- Mitnahmeeffekt¹³

Hier seien neben den Erfahrungen aus der Bearbeitung diverser vergleichbarer Projekte beispielsweise auch das Verfahren nach Bosserhoff "Abschätzung des Verkehrsaufkommens durch Vorhaben der Bauleitplanung (VerBau); Version 2020" genannt.

[&]quot;Hinweise zur Schätzung des Verkehrsaufkommens von Gebietstypen"; Heft FGSV 147; Hrsg.: Forschungsgesellschaft für das Straßen- und Verkehrswesen (FGSV); Ausgabe 2006.

Mit dem Begriff "Verbundeffekt" wird das Aufsuchen mehrere Nutzungen an einem Standort durch dieselbe Person bezeichnet.

Der Begriff "Mitnahmeeffekt" bezeichnet das Phänomen, dass Nutzungen an einem Standort sozusagen "auf dem Weg" aufgesucht werden und somit keine zusätzlichen Wege verursacht werden.

und in der Differenzierung für die jeweils maßgebenden Nutzergruppen:

- Bewohner / Beschäftigte
- Besucher / Kunden und
- Liefer- / Wirtschaftsverkehr

vorgenommen.

Die hieraus abgeleitete zusätzliche Verkehrsnachfrage durch die Erweiterung des Vennhofs ist in Tabelle 1 zusammengestellt.

In der Differenzierung für die vier o. g. Nutzergruppen ergibt sich das werktägliche Fahrtenvolumen zu¹⁴:

Nutzergruppe Bewohner:

- Bewohner (anwesend): ca. 98
- Aufkommen in Wegen/Person und Tag: 3,7
- MIV-Anteil: 75 %
- Pkw-Besetzungsgrad in Pers. pro Pkw: 1,24
- Pkw-Fahrtenvolumen der Bewohner:
 98 * 3,7 * 0,75 / 1,24 = ca. 218 Pkw/Tag (als Summe aus Quell- und Zielverkehr)

Nutzergruppe Beschäftigte:

- Beschäftigte (anwesend): 92
- Aufkommen in Wegen/Person und Tag: 2,2
- MIV-Anteil: 85 bzw. 100 %
- Pkw-Besetzungsgrad in Pers. pro Pkw: 1,00 bzw. 1,10
- Fahrtenvolumen der Beschäftigten:
 158 Pkw/Tag (als Summe aus Quell- und Zielverkehr)

Für die Berechnung im Detail sei auf die Darstellung in Tabelle 1 verwiesen.

Nutzergruppe Besucher:

- Wege der Besucher: 21
- MIV-Anteil: 95 %
- Besetzungsgrad in Pers. pro Pkw: 1,16
- Pkw-Fahrtenvolumen der Besucher:
 18 Pkw/Tag (als Summe aus Quell- und Zielverkehr)

Nutzergruppe Kunden:

- Besucher: ca. 874
- Aufkommen in Wegen/Person und Tag: 2,0
- MIV-Anteil: 80 %
- Besetzungsgrad in Pers. pro Pkw: 1,2 bzw. 1,3
- Verbundeffekt: je nach Nutzung 0 bzw. 10 %
- Mitnahmeeffekt: je nach Nutzung 0 bzw. 10 %
- Pkw-Fahrtenvolumen der Kunden:1.018 Pkw/Tag (als Summe aus Quell- und Zielverkehr)

Wirtschaftsverkehr (Wohnen):

- Liefervorgänge: 6
- Aufkommen in Wegen/Liefervorgänge und Tag: 2,0
- Verbundeffekt: 20 %
- Kfz-Fahrtenvolumen des Wirtschaftsverkehr:
 10 Kfz/Tag (als Summe aus Quell- und Zielverkehr)

Wirtschaftsverkehr (Gewerbe / Gastronomie / Einzelhandel / Lager):

- Liefervorgänge: 55
- Aufkommen in Wegen/Liefervorgänge und Tag: 2,0
- Verbundeffekt: 0 bzw. 10 %
- Kfz-Fahrtenvolumen des Wirtschaftsverkehr:
 102 Kfz/Tag (als Summe aus Quell- und Zielverkehr)

Die zusätzlichen Verkehre, die durch die Erweiterung des Vennhofs für die B 258 bzw. die Faulenbruchstraße ausgelöst werden, betragen somit insgesamt ca. 1.524 Kfz/Tag (als Summe aus Quell- und Zielverkehr) bzw. ca. 762 Kfz/Tag jeweils im Quell- und Zielverkehr.

Verkehrsuntersuchung zum Bebauungsplan Nr. 32 "Vennhof" der Gemeinde Roetgen

Verkehrsmengenabschätzung Wohnen / Gewerbe auf Basis des aktuellen Nutzungskonzeptes (Stand: Januar 2021)

Nutzungsart	Wohnen	Büro / Arztpraxen (publikumsintensive Nutzung)	Büro / Arztpraxen (publikumsarmen Nutzung)	Gastronomie	Einzelhandel	Lager	Gesamt
Nettobaulandfläche [m²]							
GFZ							
	4.296	600	2.000	1.330	170	811	
Bruttogeschossfläche (BGF) [m²]	(bisher 7.007)	(bisher 300)	(bisher 400)	(bisher 300)	(bisher 1.200)	(bisher 0)	9.207
Anteil Wohnfläche an BGF							
Wohn-/Nutzfläche (WF/NF) [m²]							
Wohneinheiten (WE) [-]	46 (bisher 75)						
Bezugsgröße	WE	BGF	BGF	BGF	BGF	BGF	
Auslastung	100%	100%	100%	100%	100%	100%	
Bezugseinheiten	46	600	2.000	1.330	170	811	
Bezugsennenen	40	800	2.000	1.330	170	011	
Nutzergruppe: Bewohner / Beschäftigte							
Beschäftigte je 100 m² Bezugseinheiten		3,0	3.0	2,0	2.0	0,1	
Wohnfläche / Bewohner		3,0	3,0	2,0	2,0	0, 1	
Einwohner je Wohneinheit	2,5						
Bewohner / Beschäftigte ges.	115	18	60	27	3	1	224
Anwesenheitsgrad / Anteil Wohnungsbez. Wege	85%	85%	85%	85%	85%	85%	
Bew. / Beschäftigte (anwesend)	98	15	51	23	3	1	190
Verkehrsaufkommen Wege / Tag	3,7	2,2	2,2	2,2	2,2	2,2	100
Wege der Bewohner / Beschäftigten pro Tag	362	34	112	50	6	2	565
Pkw-Anteil	75%	85%	85%	85%	85%	100%	
Pkw-Wege pro Tag	271	29	95	42	5	2	444
Pkw-Besetzungsgrad	1,24	1,1	1,1	1,1	1,1	1,0	
Kfz-Fahrten pro Tag	218	26	87	38	5	2	376
THE CALL PLANTS							
Nutzergruppe: Besucher / Kunden							
Besucher/ Kunden je 100 m² Bezugseinheiten		30	3	40	60	0	
Kunden pro Tag		180	60	532	102	0	874
Anwesenheitsgrad / Originäranteil		100%	100%	100%	100%	100%	
Anwesende Kunden pro Tag		180	60	532	102	0	874
Verkehrsaufkommen Wege / Tag		2,0	2,0	2,0	2,0	2,0	
Wege der Besucher je Einwohnerweg	0,05						
Wege der Besucher / Kunden pro Tag	21	360	120	1.064	204	0	1.769
Pkw-Anteil	95%	80%	80%	80%	80%	80%	
Pkw-Wege der Besucher / Kunden pro Tag	20	288	96	851	163	0	1.419
Pkw-Besetzungsgrad	1,16	1,2	1,2	1,3	1,2	1,2	
Verbundeffekt	100%	100%	100%	100%	90%	90%	
(Neubau mit Bestand)							
Mitnahmeeffekt	100%	100%	100%	90%	90%	90%	4 000
Kfz-Fahrten pro Tag	18	240	80	590	108	0	1.036
Nutzergruppe: Wirtschaftsverkehr							
Liefervorgänge je 100 Einwohner bzw. m²	5,0	1,0	1,0	0,5	1,0		
Liefervorgänge pro Tag	6	6	20	7	2	20	
Liefervorgänge pro Beschäftigten				'	_		
Verkehrsaufkommen Wege/Liefervorg.	2,0	2,0	2,0	2,0	2,0	2,0	
Verbundeffekt							
(Neubau mit Bestand)	80%	90%	90%	90%	90%	100%	
Fahrten des Wirtschaftsverkehrs pro Tag	10	10	36	12	4	40	112
		AF -			46=	45	
Summe Kfz-Fahrten pro Tag	246	276	203	640	117	42	1.524

Tabelle 1: Voraussichtliches Verkehrsaufkommen der geplanten Erweiterung des Vennhofs in der Gemeinde Roetgen

4.2 Ermittlung der zukünftigen Verkehrsverflechtungen

Die räumliche Verkehrsverflechtung der auf die geplante Erweiterung des Vennhofs bezogenen zusätzlichen Verkehre in Höhe von ungefähr 1.524 Kfz / Tag (als Summe aus Quell- und Zielverkehr) wurde anhand der Lage im Straßennetz und in Anlehnung an das von den Bewohnern / Beschäftigten / Kunden zu erwartende Verkehrsverhalten ermittelt. In Bild 2 und Bild 3 ist jeweils die zugrundeliegende Verkehrsverteilung (im Quell- und Zielverkehr) für die Bewohner / Beschäftigte und Besucher / Kunden / Wirtschaftsverkehr dargestellt.

Für eine Art – Worst-Case-Betrachtung – werden alle Verkehre zur / von der B 258 geführt. Verkehre mit Bezug zum Ortskern Roetgen werden somit auch alle über die B 258 und nicht auch über die Faulenbruchstraße abgewickelt¹⁵.

Abbildung 5: Verteilung des Kfz-Verkehrsaufkommens der Bewohner / Beschäftigten

Kartengrundlage: openstreetmap.org

Dies wird sich in der Realität nicht vollständig so einstellen.

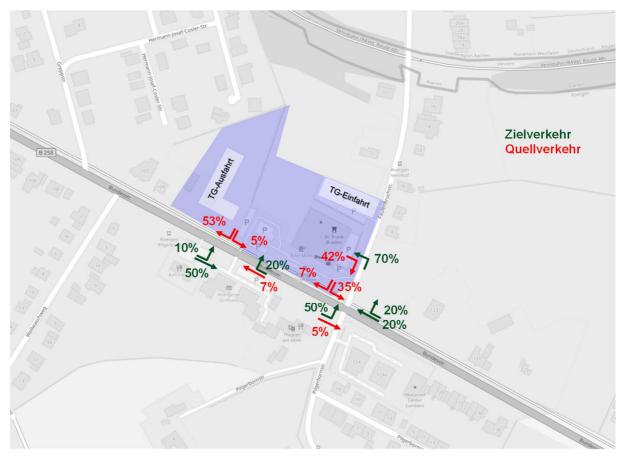


Abbildung 6: Verteilung des Kfz-Verkehrsaufkommens der Besucher / Kunden / Wirtschaftsverkehr

Kartengrundlage: openstreetmap.org

4.3 Überlagerung des Prognose-Nullfalls mit den Verkehren des Bauvorhabens

Um die durch die Erweiterung des Vennhofs zusätzlich entstehenden Verkehre mit den allgemeinen Verkehren (vgl. Kapitel 2) und der allgemeinen Verkehrsentwicklung (vgl. Kapitel 3.1) zu überlagern und die Spitzenstunde der Gesamtbelastung zu ermitteln, wurden die Anteile des Verkehrsaufkommens der Erweiterung des Vennhofs pro Stunde ermittelt¹⁶. Durch Überlagerung der Belastungen aus dem Prognose-Nullfall mit dem zusätzlichen Aufkommen der Erweiterung des Vennhofs wurde die Spitzenstunde am Vormittag und Nachmittag des Gesamtaufkommens ermittelt. Diese liegt wie in der Analyse am Vormittag zwischen 07:00 und

¹⁶ Zur Ableitung wurden Tagesganglinien aus dem Papier "Hinweise zur Schätzung des Verkehrsaufkommens von Gebietstypen; Hrsg.: FGSV; 2006; verwendet.

08:00 Uhr und am Nachmittag zwischen 16:00-17:00 Uhr. Daraus ergeben sich für das Bauvorhaben in der Spitzenstunde am Vormittag ein Verkehrsaufkommen von 33 LV¹⁷-Fahrten/h und 3 SV-Fahrten/h im Zielverkehr und 16 LV-Fahrten/h und 2 SV-Fahrten/h im Quellverkehr. Am Nachmittag ergibt sich ein Verkehrsaufkommen von 45 LV-Fahrten/h und 6 SV-Fahrten/h im Zielverkehr und 64 LV-Fahrten/h und 5 SV-Fahrten/h im Quellverkehr.

Die zuvor ermittelten Aufkommenswerte durch das Vorhaben wurden anhand der oben angegebenen Verteilungsquoten auf das Straßennetz verteilt.

Analog zum Prognose-Nullfall erfolgte die Umrechnung der werktäglichen Verkehrsmengen auf DTV. In Abbildung 7 sind die so ermittelten DTV-Belastungen sowie Kenndaten für die schalltechnische Berechnung nach RLS-19 dargestellt.

Verkehrliche Kenngrößen nach RLS-19

Prognose-1-Fall

Querschnitt	Von	Bis	DTV	M _T	M _N	p1 _⊤	p2 _T	p1 _N	p2 _N
Quersumitt	Voii	Dis	[Kfz/Tag]	[Kfz/h]	[Kfz/h]	[%]	[%]	[%]	[%]
Zufahrt Parkplatz (Vennhof)	B 258		1.050	60	8	3	2	0	0
B 258	Faulenbruchstraße	Zufahrt Parkplatz (Vennhof)	17.500	1.051	83	3	1	5	2
Faulenbruchstraße	B 258	Zufahrt Parkplatz (Vennhof)	2.250	134	14	2	1	1	1
B 258	Grünepleistraße	Faulenbruchstraße	17.900	1.080	87	3	1	5	2
Pilgerbornstraße			250	14	2	1	0	6	0
Parkplatz Grillhaus			150	9	1	2	1	0	0
B 258	Wollwaschweg	Zufahrt Parkplatz (Vennhof)	18.000	1.080	88	3	1	5	2

Abbildung 7: Verkehrliche Kenngrößen nach RLS-19 – Prognose-Planfall

LV steht für Leichtverkehr und meint Fahrzeuge mit bis zu 3,5t zulässigem Gesamtgewicht. SV steht für Schwerverkehr und meint Fahrzeuge mit mehr als 3,5t zulässigem Gesamtgewicht.

4.4 Leistungsfähigkeitsbetrachtung – Prognose-Planfall

Für die beiden unsignalisierten Knotenpunkte

- B 258 / Faulenbruchstraße
- B 258 / Zufahrt Parkplatz (Vennhof)

wurden mit der aus der Überlagerung der Verkehre des Prognose-Nullfalles 2030 und der Verkehre des Bauvorhabens ermittelten zukünftig zu erwartenden Verkehrsmenge (vgl. Kapitel 4.1) sowie dem heutigen bzw. dem vorgesehenen Ausbauzustand Leistungsfähigkeitsnachweise geführt (vgl. Anhang 3).

Der Leistungsfähigkeitsnachweis für den Knoten B 258 / Faulenbruchstraße mit den prognostizierten Verkehrsmengen zeigt, dass an diesem zukünftig in der nachmittäglichen Spitzenstunde Leistungsfähigkeitsdefizite zu erwarten sind. Dies betrifft die Verkehre aus der Faulenbruchstraße. Für die bei den prognostizierten Verkehrsmengen in der Nachmittagsspitzenstunde und dem vorhandenen Knotenausbau eine Qualitätsstufe (QSV) E ermittelt wird. Die Verkehre im Zuge der B 258 weisen wie auch im Prognose-Nullfall eine Qualitätsstufe (QSV) A auf. Damit zeigt sich, dass für die B 258 keine Behinderungen auftreten. In Bezug auf diese im Prognose-Planfall ermittelten Leistungsfähigkeitsdefizite ist zu beachten, dass diese in der Nachmittagsspitzenstunde bereits im Prognose-Nullfall auftreten. Die durch die Erweiterung des Vennhofs ausgelösten Verkehre verändern die Belastungssituation an diesem Knoten nicht signifikant. Wie bereits aus früheren Verkehrsuntersuchungen für die Knotenpunkte entlang der B 258 in der Gemeinde Roetgen bekannt ist, liegen bereits für die Analyse Leistungsfähigkeitsdefizite an verschiedenen Knoten der B 258 (u.a. auch B 258 / Faulenbruchstraße) vor.

Für die Anbindung B 258 / Zufahrt Parkplatz (Vennhof) zeigen die Leistungsfähigkeitsnachweise für die beiden Spitzenstunden unter Berücksichtigung der vorgesehenen Linksabbiegespur, dass dieser mit den prognostizierten Verkehrsmengen in die Qualitätsstufe (QSV) D und besser eingeordnet wird. Die Nachweise zeigen, dass die Anbindung auch bei den zukünftig zu erwartenden Verkehrsmengen mit dem vorgesehenen Knotenausbau in ausreichend leistungsfähiger Form betrieben werden kann. Die Verkehre im Zuge der B 258 werden an dieser Anbindung nicht behindert.

5. Fazit

Die hier vorgelegte aktualisierte Verkehrsuntersuchung zur Erweiterung des Vennhofs an der B 258 in der Gemeinde Roetgen kommt zu dem Ergebnis, dass die bestehende Anbindung

B 258 / Zufahrt Parkplatz (Vennhof)

zukünftig, auch mit Ansatz der durch die Erweiterung des Vennhofs zusätzlich generierten Verkehre, in ausreichend leistungsfähiger Form (Qualitätsstufe (QSV) D) betrieben werden kann. Die Verkehre im Zuge der B 258 werden an dieser Anbindung nicht behindert.

Am Knotenpunkt

B 258 / Faulenbruchstraße

zeigen die Ergebnisse, dass sich die im Prognose-Nullfall schon ergebenden Leistungsfähigkeitsdefizite am Nachmittag für die Verkehre aus der Faulenbruchstraße auf Grund der Erweiterung des Vennhofs erwartungsgemäß geringfügig erhöhen. Für die Verkehre im Zuge der B 258 ergeben sich aber auch infolge der Erweiterung des Vennhofs an diesen Knoten keine Behinderungen. Die sich bereits im Prognose-Nullfall anhand der rechnerischen Nachweise ergebende Ausbaunotwendigkeit der Zufahrt der Faulenbruchstraße wird durch die Neuverkehre, die infolge der Erweiterung des Vennhofs entstehen, nicht maßgeblich verschärft.

	Knotenpunkte		Prognose- Nullfall	Prognose- Mitfall
		Knotenpunktsform		
			Vorm. / Nachm.	Vorm. / Nachm.
1	B 258 / Faulenbruchstraße	vorfahrtsgeregelt	D/E	D/E
2	B 258 / Zufahrt Parkplatz (Vennhof)	vorfahrtsgeregelt	C/D	C/D

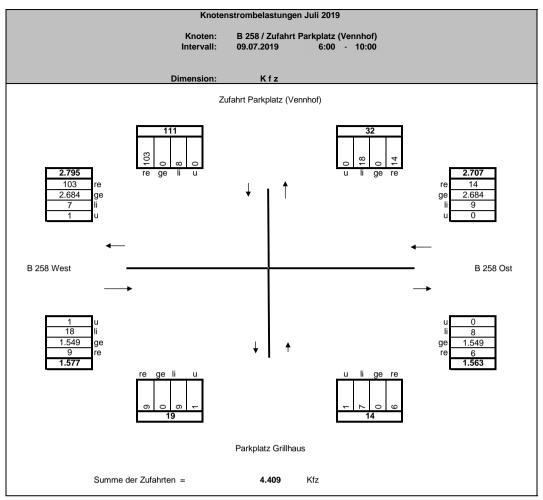
Anders als bei dem hier unterstellten Worst-Case-Ansatz, werden sich in der Spitzenzeit nicht alle Verkehre, die durch die Erweiterung des Vennhofs entstehen, auf die B 258 orientieren. Ein Teil der auf den Ortskern bezogenen Verkehre wird über die Faulenbruchstraße abgewickelt werden und somit die Belastungssituation am Knoten geringfügig entspannen.

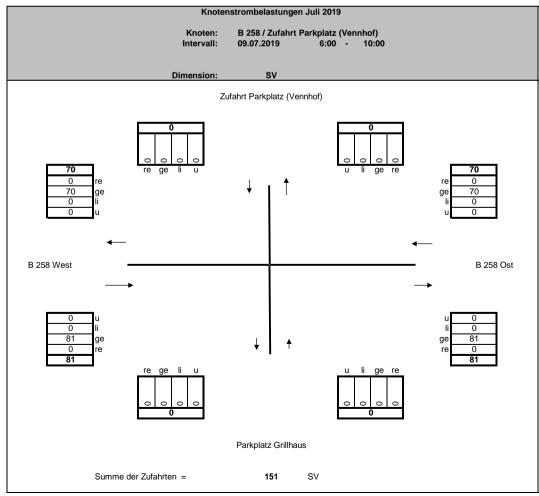
6. Anhang

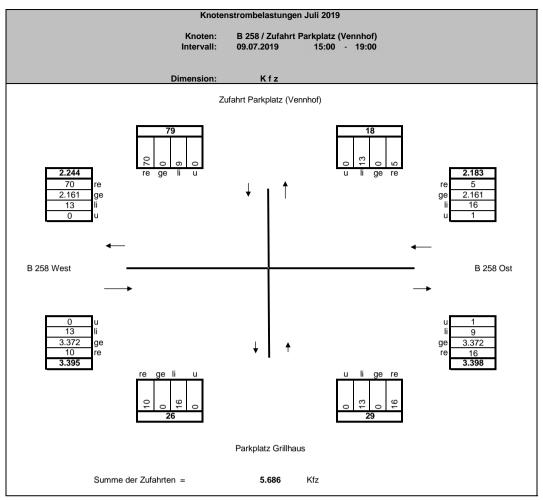
Anhang 1:

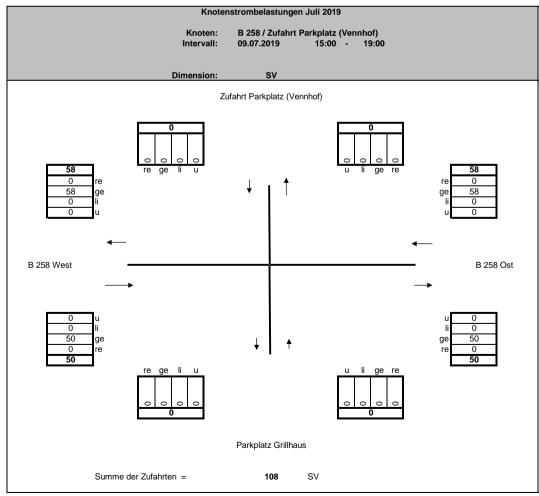
- Auswertung der Verkehrszählung an dem Knotenpunkt B 258 / Zufahrt Parkplatz (Vennhof) im Juli 2019 für die Vormittagsstundengruppe 6:00 bis 10:00 Uhr und die Nachmittagsstundengruppe 15:00 bis 19:00 Uhr
- Verkehrsbelastungen der maßgebenden Spitzenstunden für den Knotenpunkt B 258 / Faulenbruchstraße und B 258 / Zufahrt Parkplatz (Vennhof)

Anhang 2:

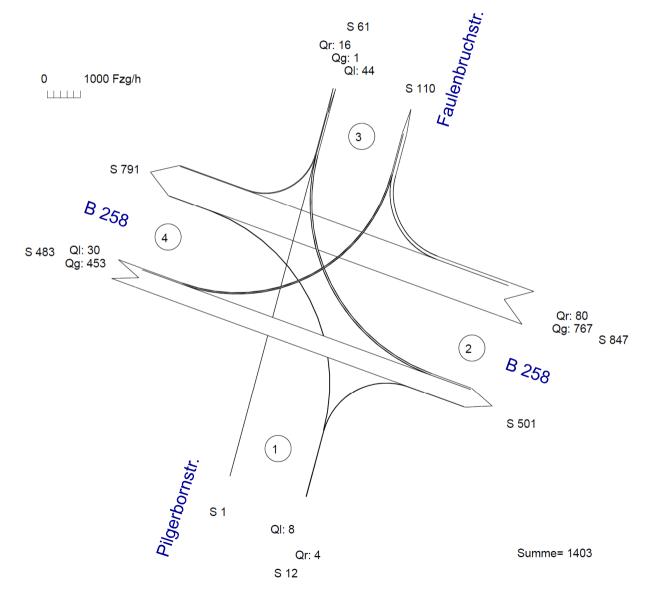

- Verkehrsbelastungen und Leistungsfähigkeitsbetrachtung Prognose-Nullfall für den Knotenpunkt B 258 / Faulenbruchstraße in der Vor- und Nachmittagsspitzenstunde
- Verkehrsbelastungen und Leistungsfähigkeitsbetrachtung Prognose-Nullfall für den Knotenpunkt B 258 / Zufahrt Parkplatz (Vennhof) in der Vor- und Nachmittagsspitzenstunde

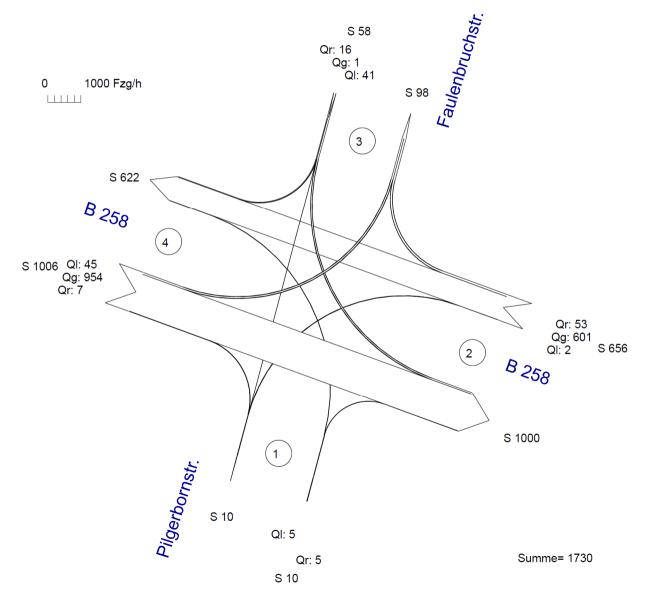

Anhang 3:


- Verkehrsbelastungen und Leistungsfähigkeitsbetrachtung Prognose-Planfall für den Knotenpunkt B 258 / Faulenbruchstraße in der Vor- und Nachmittagsspitzenstunde
- Verkehrsbelastungen und Leistungsfähigkeitsbetrachtung Prognose-Planfall für den Knotenpunkt B 258 / Zufahrt Parkplatz (Vennhof) in der Vor- und Nachmittagsspitzenstunde

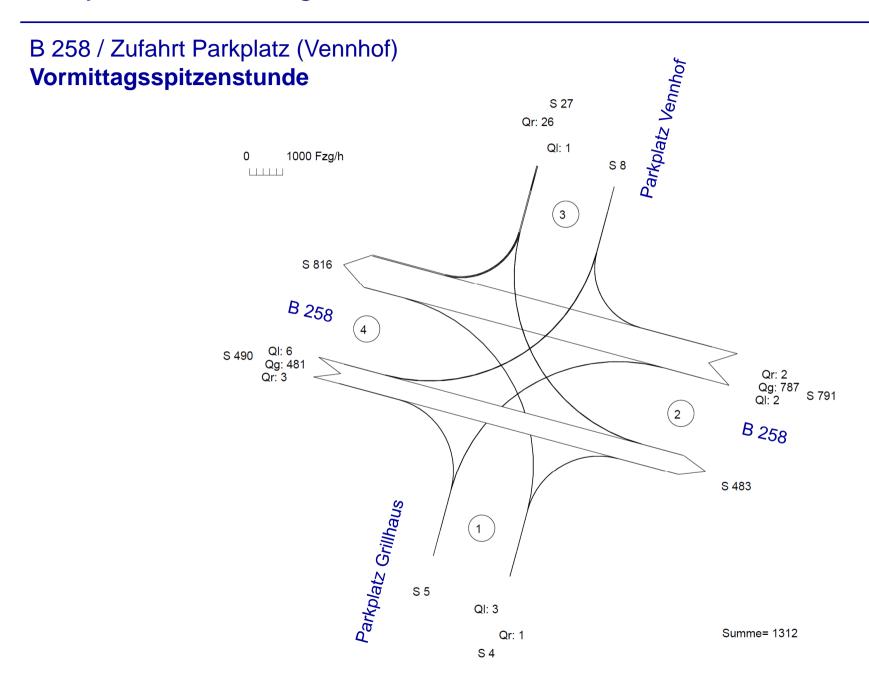

	Name der Erhe Zeitinter	vall 1	Dienstag, 9). Juli 2019	rkplatz Ven , 06:00 - 10:	00 Uhr											
	Zeitinter Kn				, 15:00 - 19: latz (Vennh											Kraftfa	hrzeuge (Kfz)
			latz (Vennho tung Süden	of)		B 258			i		: Grillhaus tung Norder				West		Gesamt
Intervall	U-Turn	Links	Gerade	Rechts	U-Turn	Links	Gerade	Rechts	U-Turn	Links	Gerade	Rechts	U-Turn	Links	Gerade	Rechts	Summe
6:00	0	0	0	2	0	0	166	0	0	0	0	0	0	1	35	0	204
6:15	0	0	0	5	0	1	213	1	0	0			0	0	55	0	275
6:30 6:45	0	0	0	11 7	0	1	174 211	0	0	0			0	1	71 75	0	258 298
Summe 6:00 - 7:00	0	1	0	25	0	2	764	1	0	0		2	0	3	236	1	1.035
7:00	0	0	0	4	0	0	231	1	0	1	0		1	0	96	0	334
7:15	0	0	0	8	0	1	179	0	1	1	0		0	0	132	0	322
7:30 7:45	0	1	0	3 11	0	0	194 183	1	0	0		1	0	3 2	133 120	2	338
7:45 Summe 7:00 - 8:00	0	1	0	26	0	2	787	2	1	2		1	1	5	481	3	318 1.312
8:00	0	2	0	8	0	0	185	3	0	2		1	0	0	79	2	282
8:15	0	0	0	8	0	2	175	2	0	1	0		0	1	93	1	284
8:30	0	0	0	6	0	1	141	0	0	1	0		0	1	112	0	262
8:45	0	1	0	7	0	0	148	2	0	1	0		0	4	109	2	274
Summe 8:00 - 9:00 9:00	0	3	0	29 7	0	3	649	7	0	5	0	2	0	6	393	5	1.102
9:15	0	1 2	0	4	0	0	122 137	2	0	0	-	-	0	1	97 117	0	263
9:30	0	0	0	6	0	2	101	0	0	0	0	1	0	1	115	0	226
9:45	0	0	0	6	0	0	124	2	0	0	0	0	0	0	110	0	242
Summe 9:00 - 10:00	0	3	0	23	0	2	484	4	0	0	0	1	0	4	439	0	960
Summe 6:00 - 10:00	0	8	0	103	0	9	2.684	14	1	7	0	6	1	18	1.549	9	4.409
15:00	0	0	0	3	0	0	114	1	0	1	0	1	0	5	183	0	308
15:15	0	2	0	4	0	0	148	0	0	2			0	2		0	359
15:30 15:45	0	0	0	6	0	0	137 135	1	0	0			0	0	170 215	0	314 360
Summe 15:00 - 16:00	0	2	0	19	0	3	534	2	0	3		1	0	7	769	1	1.341
16:00	0	0	0	6	0	4	139	0	0	1	0	3	0	0	203	0	356
16:15	0	1	0	7	0	2	155	1	0	0	0	1	0	0	259	0	426
16:30	0	1	0	3	0	0	148	1	0	0			0	0	268	0	421
16:45 Summe 16:00 - 17:00	0	3	0	20	1	0	144 586	0	0	0	0	1	0	0	245 975	3	399 1.602
17:00	0	0	0	20	0	1	169	0	0	3	0	2	0	0	227	1	405
17:15	0	1	0	4	0	0	138	1	0	1	0		0	1	230	0	376
17:30	0	1	0	6	0	1	126	0	0	0			0	3	230	0	369
17:45	0	0	0	7	0	0	136	0	0	1	0		0	0	209	1	356
Summe 17:00 - 18:00	0	2	0	19	0	2	569	1	0	5			0	4	896	2	1.506
18:00 18:15	0	0	0	3	0	3	133 106	0	0	0			0	0	202 198	1 2	343 316
18:30	0	1	0	3	0	2	124	0	0	2			0	0	175	1	308
18:45	0	0	0	2	0	0	109	0	0	0	0		0	0	157	0	270
Summe 18:00 - 19:00	0	2	0	12	0	5	472	0	0	4	0	4	0	2	732	4	1.237
Summe 15:00 - 19:00	0	9	0	70	1	16	2.161	5	0	13	0	16	0	13	3.372	10	5.686
Vormittagsspitze 07:00 - 08:00 Nachmittagsspitze 16:15 - 17:15	0	1 3	0 0	26 16	0	2 3	787 616	2 2	1 0	2 3			1 0	5 0	481 999	3 4	1.312 1.651

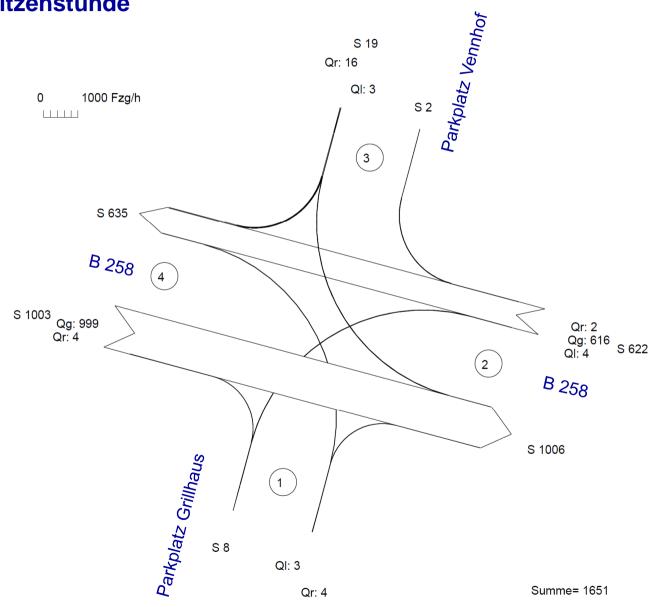
Ingenieurgruppe IVV GmbH & Co. KG

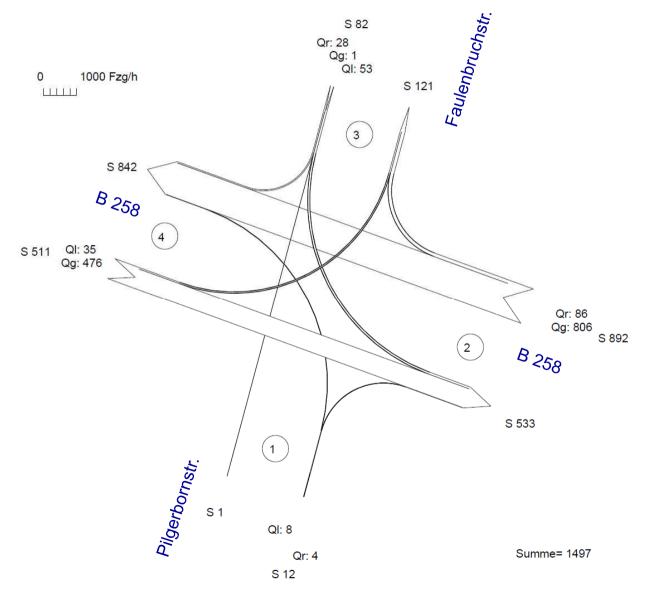




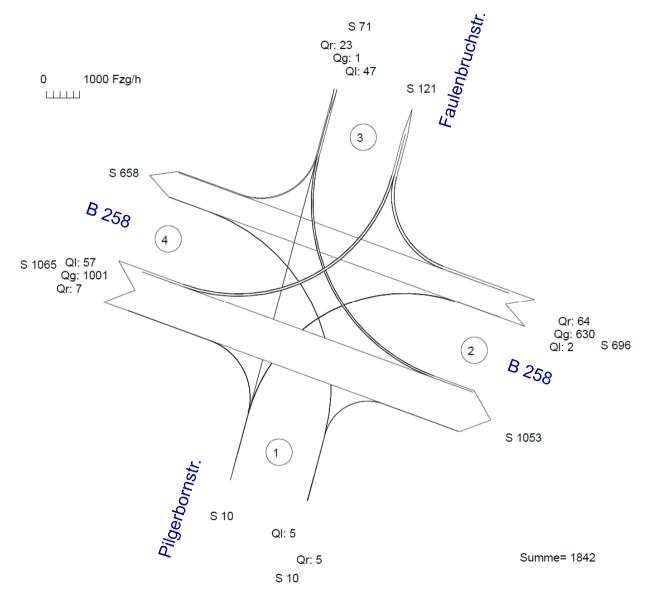
B 258 / Faulenbruchstraße Vormittagsspitzenstunde




B 258 / Faulenbruchstraße



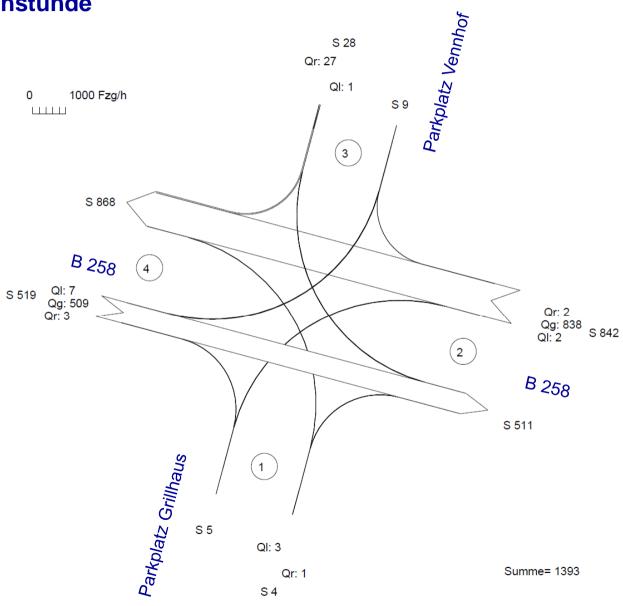
B 258 / Faulenbruchstraße **Vormittagsspitzenstunde**


Vormittagsspitzenstunde

			Kapazit	täten der	Einzelst	röme		
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	$G_{\mathbf{i}}$	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x b z w. p _z
	1 (2)	892	466	1,000	466	0,077	0,923	0,923
Α	2 (1)		1800	1,000	1800	0,271	1,000	
	3 (1)	0	1600	1,000	1600	0,000	1,000	
	4 (4)	1389	170	1,000	145	0,055		
В	5 (3)	1403	152	1,000	141	0,000	1,000	0,923
	6 (2)	476	671	1,000	671	0,006	0,994	
	7 (2)	476	748	1,000	748	0,000	1,000	0,923
С	8 (1)		1800	1,000	1800	0,455	1,000	
[9 (1)	0	1600	1,000	1600	0,055	1,000	
	10 (4)	1364	176	1,000	161	0,329		
D	11 (3)	1360	162	1,000	149	0,007	0,993	0,918
	12 (2)	849	425	1,000	425	0,068	0,932	

			Qualitä	t der Ein:	zel- und	Mischstr	röme				
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-		
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C_i	grad x _i	reserve R _i	Wartezeit w	stufe		
l		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV		
	1	35	1,020	466	456	0,077	421	8,5	Α		
Α	2	476	1,026	1800	1754	0,271	1278	0,0	Α		
	3										
4 8 1,000 145 145 0,055 137 26,2											
В	5										
	6	4	1,000	671	671	0,006	667	5,4	Α		
	7										
С	8	806	1,016	1800	1772	0,455	966	0,0	Α		
	9	86	1,016	1600	1574	0,055	1488	0,0	Α		
	10	53	1,000	161	161	0,329	108	33,1	D		
D	11	1	1,000	149	149	0,007	148	24,2	С		
	12	28	1,025	425	415	0,068	387	9,3	Α		
Α	2+3	476	1,026	1800	1754	0,271	1278	0,0	Α		
В	4+5+6	12	1,000	197	197	0,061	185	19,5	В		
С	8+9	892	1,016	1779	1751	0,509	859	0,0	Α		
D	10+11+12	82	1,009	205	204	0,403	122	29,5	С		
			erreicl	nbare Qualität	sstufe QSV _{FZ,}	ges			D		

	Stauraumbemessung - Abbiegeströme												
		Fahrzeuge	Faktoren	Kapazität									
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	C_{i}	S	N_S	Staulänge						
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]						
Α													
^													
В	4+5+6	12	1,000	197	95	0,19	6						
Ь													
С													
C													
D	10+11+12	82	1,009	204	95	1,96	13						
D													



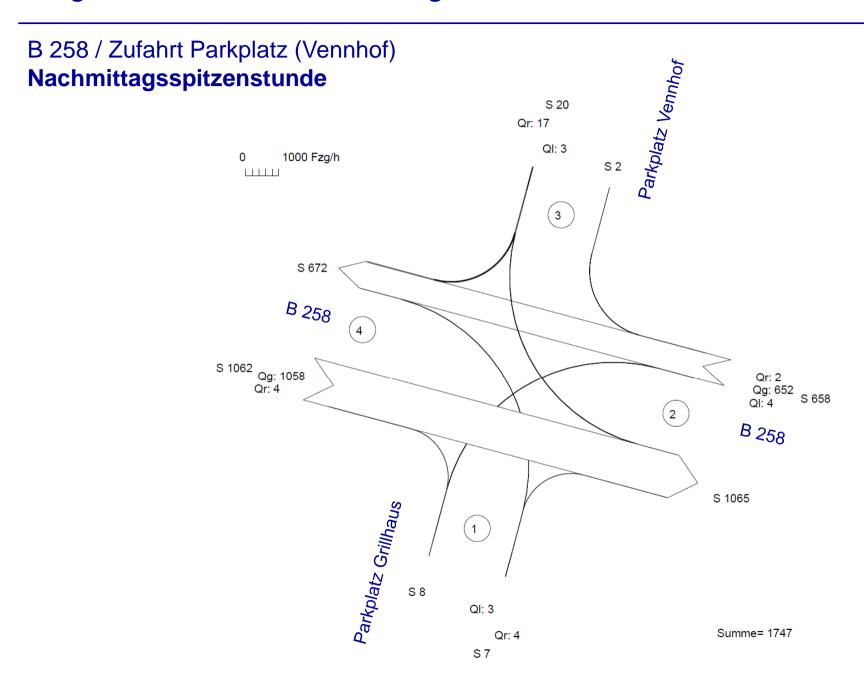
			Kapazit	täten der	Einzelst	röme		
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	$G_{\mathbf{i}}$	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x bzw. p _z
	1 (2)	694	583	1,000	583	0,098	0,902	0,898
Α	2 (1)		1800	1,000	1800	0,561	1,000	
	3 (1)	0	1600	1,000	1600	0,004	1,000	
	4 (4)	1750	104	1,000	88	0,057		
В	5 (3)	1758	93	1,000	83	0,000	1,000	0,898
	6 (2)	1005	352	1,000	352	0,014	0,986	
	7 (2)	1008	408	1,000	408	0,005	0,995	0,898
С	8 (1)		1800	1,000	1800	0,356	1,000	
	9 (1)	0	1600	1,000	1600	0,041	1,000	
	10 (4)	1731	107	1,000	94	0,498		
D	11 (3)	1729	96	1,000	87	0,012	0,988	0,889
	12 (2)	662	534	1,000	534	0,043	0,957	

	Qualität der Einzel- und Mischströme												
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-				
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C_i	grad x _i	reserve R _i	Wartezeit w	stufe				
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV				
	1	57	1,000	583	583	0,098	526	6,8	Α				
Α	2	1001	1,008	1800	1785	0,561	784	0,0	Α				
	3	7	1,000	1600	1600	0,004	1593	0,0	Α				
4 5 1,000 88 88 0,057 83 43,2													
В	5												
	6	5	1,000	352	352	0,014	347	10,4	В				
	7	2	1,000	408	408	0,005	406	8,9	Α				
С	8	630	1,017	1800	1770	0,356	1140	0,0	Α				
	9	64	1,022	1600	1566	0,041	1502	0,0	Α				
	10	47	1,000	94	94	0,498	47	74,4	E				
D	11	1	1,000	87	87	0,012	86	42,0	D				
	12	23	1,000	534	534	0,043	511	7,0	Α				
Α	2+3	1008	1,008	1798	1784	0,565	776	0,0	Α				
В	4+5+6	10	1,000	141	141	0,071	131	27,4	С				
С	8+9	694	1,017	1779	1749	0,397	1055	0,0	Α				
D	10+11+12	71	1,000	129	129	0,552	58	61,2	E				
			erreicl	nbare Qualität	sstufe QSV _{FZ,}	ges			E				

	Stauraumbemessung - Abbiegeströme										
Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _i [Fz/h]	S [%]	N _S [Fz]	Staulänge [m]				
Α											
В	4+5+6	10	1,000	141	95	0,23	6				
С											
D	10+11+12	71	1,000	129	95	3,31	24				

Vormittagsspitzenstunde

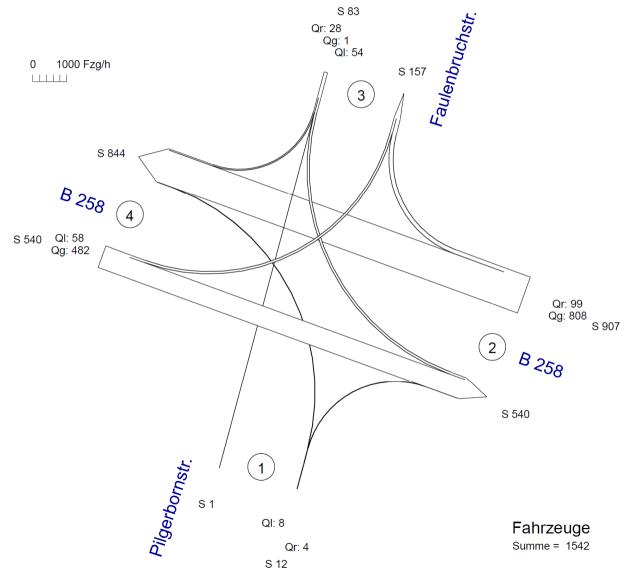
Vormittagsspitzenstunde



			Kapazit	äten der	Einzelst	röme		
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	$G_{\mathbf{i}}$	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x b z w. p _z
	1 (2)	840	494	1,000	494	0,014	0,986	0,983
Α	2 (1)		1800	1,000	1800	0,290	1,000	
	3 (1)	0	1600	1,000	1600	0,002	1,000	
	4 (4)	1386	171	1,000	157	0,019		
В	5 (3)	1360	162	1,000	159	0,000	1,000	0,983
	6 (2)	511	643	1,000	643	0,002	0,998	
	7 (2)	512	718	1,000	718	0,003	0,997	0,983
С	8 (1)		1800	1,000	1800	0,473	1,000	
	9 (1)	0	1600	1,000	1600	0,001	1,000	
	10 (4)	1360	177	1,000	174	0,006		
D	11 (3)	1360	162	1,000	159	0,000	1,000	0,983
	12 (2)	839	430	1,000	430	0,063	0,937	

	Qualität der Einzel- und Mischströme											
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-			
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C_i	grad x _i	reserve R _i	Wartezeit w	stufe			
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV			
	1	7	1,000	494	494	0,014	487	7,4	Α			
Α	2	509	1,026	1800	1754	0,290	1245	0,0	Α			
	3	3	1,000	1600	1600	0,002	1597	0,0	Α			
4 3 1,000 157 157 0,019 154 23,3												
В	5											
	6	1	1,000	643	643	0,002	642	5,6	Α			
	7	2	1,000	718	718	0,003	716	5,0	Α			
С	8	838	1,016	1800	1772	0,473	934	0,0	Α			
	9	2	1,000	1600	1600	0,001	1598	0,0	Α			
	10	1	1,000	174	174	0,006	173	20,9	С			
D	11											
	12	27	1,000	430	430	0,063	403	8,9	Α			
Α	2+3	512	1,026	1799	1753	0,292	1241	0,0	Α			
В	4+5+6	4	1,000	194	194	0,021	190	19,0	В			
С	8+9	840	1,016	1799	1771	0,474	931	0,0	Α			
D 10+11+12 28 1,000 409 409 0,068 381 9,5												
			erreich	nbare Qualität	sstufe QSV _{FZ,}	ges			С			

	Stauraumbemessung - Abbiegeströme											
		Fahrzeuge	Faktoren	Kapazität	_							
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	C_i	S	N _S	Staulänge					
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]					
Α												
^												
В	4+5+6	4	1,000	194	95	0,06	6					
Ь												
С												
C												
D	10+11+12	28	1,000	409	95	0,22	6					
D												



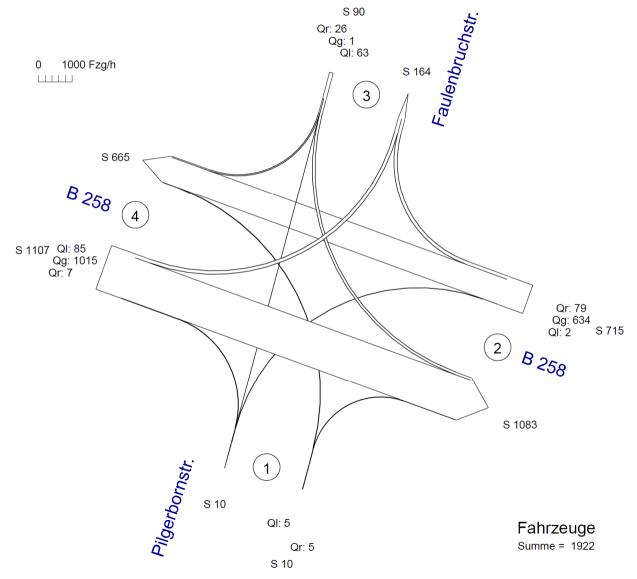
	Kapazitäten der Einzelströme												
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier					
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	$G_{\mathbf{i}}$	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand					
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x b z w. p _z					
	1 (2)	654	610	1,000	610	0,000	1,000	0,990					
Α	2 (1)		1800	1,000	1800	0,592	1,000						
	3 (1)	0	1600	1,000	1600	0,003	1,000						
	4 (4)	1734	106	1,000	102	0,029							
В	5 (3)	1718	98	1,000	97	0,000	1,000	0,990					
	6 (2)	1060	328	1,000	328	0,012	0,988						
	7 (2)	1062	384	1,000	384	0,010	0,990	0,990					
С	8 (1)		1800	1,000	1800	0,368	1,000						
	9 (1)	0	1600	1,000	1600	0,001	1,000						
	10 (4)	1721	108	1,000	106	0,028							
D	11 (3)	1719	98	1,000	97	0,000	1,000	0,990					
	12 (2)	653	540	1,000	540	0,031	0,969						

			Qualitä	t der Ein	zel- und	Mischstr	öme						
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-				
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C_i	grad x _i	reserve R _i	Wartezeit w	stufe				
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV				
	1												
Α	2	1058	1,008	1800	1786	0,592	728	0,0	Α				
3 4 1,000 1600 1600 0,003 1596 0,0													
	4 3 1,000 102 102 0,029 99 36,4												
В	5												
	6	4	1,000	328	328	0,012	324	11,1	В				
	7	4	1,000	384	384	0,010	380	9,5	Α				
С	8	652	1,016	1800	1771	0,368	1119	0,0	Α				
	9	2	1,000	1600	1600	0,001	1598	0,0	Α				
	10	3	1,000	106	106	0,028	103	35,1	D				
D	11												
	12	17	1,000	540	540	0,031	523	6,9	Α				
Α	2+3	1062	1,008	1799	1785	0,595	723	0,0	Α				
В	4+5+6	7	1,000	168	168	0,042	161	22,3	С				
С	8+9	654	1,016	1799	1771	0,369	1117	0,0	Α				
D 10+11+12 20 1,000 334 334 0,060 314 11,5													
			erreicl	hbare Qualität	sstufe QSV _{FZ,}	ges			D				

	Stauraumbemessung - Abbiegeströme											
		Fahrzeuge	Faktoren	Kapazität								
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	C_i	S	N _S	Staulänge					
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]					
Α												
В	4+5+6	7	1,000	168	95	0,13	6					
Ь												
С												
C												
D	10+11+12	20	1,000	334	95	0,19	6					

B 258 / Faulenbruchstraße **Vormittagsspitzenstunde**

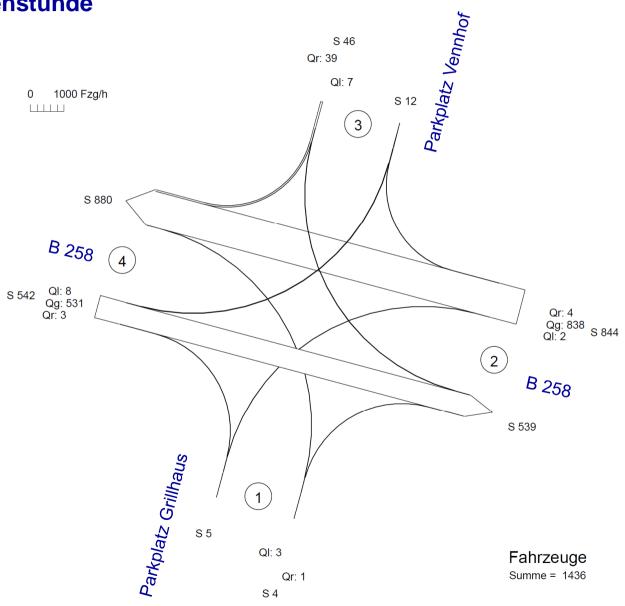
Vormittagsspitzenstunde



	Kapazitäten der Einzelströme													
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier						
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	$G_{\mathbf{i}}$	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand						
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x b z w. p _z						
	1 (2)	907	458	1,000	458	0,133	0,867	0,867						
Α	2 (1)		1800	1,000	1800	0,275	1,000							
	3 (1)	0	1600	1,000	1600	0,000	1,000							
	4 (4)	1427	161	1,000	130	0,062								
В	5 (3)	1447	143	1,000	124	0,000	1,000	0,867						
	6 (2)	482	666	1,000	666	0,006	0,994							
	7 (2)	482	743	1,000	743	0,000	1,000	0,867						
С	8 (1)		1800	1,000	1800	0,456	1,000							
	9 (1)	0	1600	1,000	1600	0,063	1,000							
	10 (4)	1402	167	1,000	144	0,380								
D	11 (3)	1398	154	1,000	133	0,008	0,992	0,861						
	12 (2)	858	421	1,000	421	0,068	0,932							

	Qualität der Einzel- und Mischströme											
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-			
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C_i	grad x _i	reserve R _i	Wartezeit w	stufe			
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV			
	1	58	1,048	458	437	0,133	379	9,5	Α			
Α	2	482	1,026	1800	1754	0,275	1272	0,0	Α			
3												
4 8 1,000 130 130 0,062 122 29,6												
В	5											
	6	4	1,000	666	666	0,006	662	5,4	Α			
	7											
С	8	808	1,016	1800	1771	0,456	963	0,0	Α			
	9	99	1,014	1600	1578	0,063	1479	0,0	Α			
	10	54	1,013	144	142	0,380	88	40,7	D			
D	11	1	1,000	133	133	0,008	132	27,2	С			
	12	28	1,025	421	410	0,068	382	9,4	Α			
Α	2+3	482	1,026	1800	1754	0,275	1272	0,0	Α			
В	4+5+6	12	1,000	177	177	0,068	165	21,8	С			
С	8+9	907	1,016	1776	1747	0,519	840	0,0	Α			
D 10+11+12 83 1,017 185 182 0,456 99 36,1												
			erreicl	nbare Qualität	sstufe QSV _{FZ,}	ges			D			

	Stauraumbemessung - Abbiegeströme											
Zufahrt	Strom	Fahrzeuge q _{Fz,i}	Faktoren f _{PE,i}	Kapazität C _i	S	N _S	Staulänge					
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]					
Α												
В	4+5+6	12	1,000	177	95	0,22	6					
В												
С												
C												
D	10+11+12	83	1,017	182	95	2,39	19					
D			·		·	·						

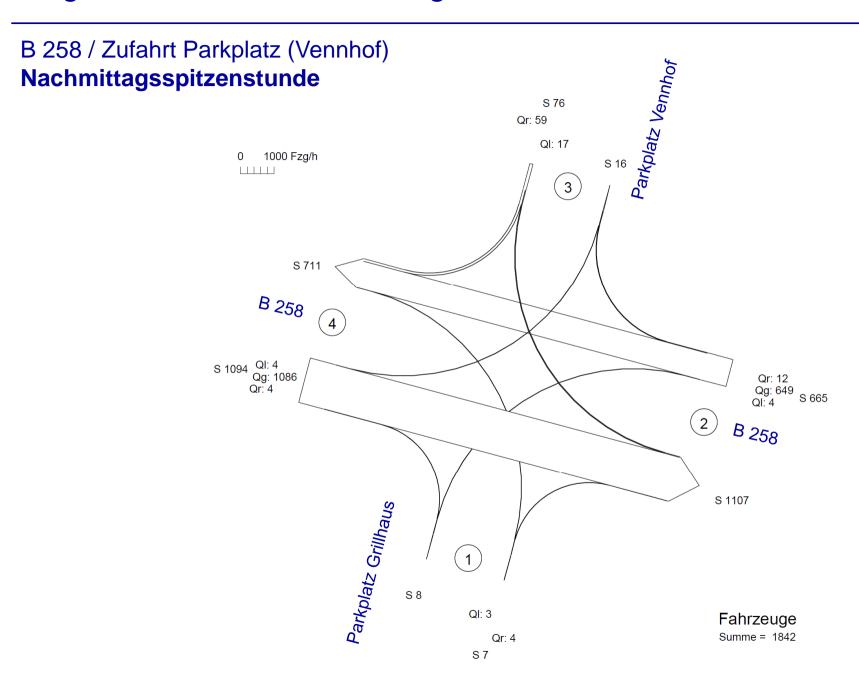

			Kapazit	äten der	Einzelst	röme		
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	$G_{\mathbf{i}}$	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x bzw. p _z
	1 (2)	713	571	1,000	571	0,153	0,847	0,843
Α	2 (1)		1800	1,000	1800	0,569	1,000	
	3 (1)	0	1600	1,000	1600	0,004	1,000	
	4 (4)	1806	96	1,000	76	0,066		
В	5 (3)	1819	85	1,000	72	0,000	1,000	0,843
	6 (2)	1019	346	1,000	346	0,014	0,986	
	7 (2)	1022	401	1,000	401	0,005	0,995	0,843
С	8 (1)		1800	1,000	1800	0,358	1,000	
	9 (1)	0	1600	1,000	1600	0,051	1,000	
	10 (4)	1784	99	1,000	82	0,781		
D	11 (3)	1783	90	1,000	75	0,013	0,987	0,834
	12 (2)	674	527	1,000	527	0,049	0,951	

			Qualitä	t der Ein:	zel- und	Mischstr	öme					
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-			
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C_i	grad x _i	reserve R _i	Wartezeit w	stufe			
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV			
	1	85	1,025	571	557	0,153	472	7,6	Α			
Α	2	1015	1,008	1800	1785	0,569	770	0,0	Α			
3 7 1,000 1600 1600 0,004 1593 0,0												
4 5 1,000 76 76 0,066 71 50,5												
В	5											
	6	5	1,000	346	346	0,014	341	10,6	В			
	7	2	1,000	401	401	0,005	399	9,0	Α			
С	8	634	1,018	1800	1769	0,358	1135	0,0	Α			
	9	79	1,027	1600	1559	0,051	1480	0,0	Α			
	10	63	1,022	82	81	0,781	18	166,3	E			
D	11	1	1,000	75	75	0,013	74	48,3	E			
	12	26	1,000	527	527	0,049	501	7,2	Α			
Α	2+3	1022	1,008	1798	1784	0,573	762	0,0	Α			
В	4+5+6	10	1,000	125	125	0,080	115	31,3	D			
С	8+9	713	1,019	1775	1743	0,409	1030	0,0	Α			
D 10+11+12 90 1,016 108 107 0,844 17 159,6												
			erreicl	nbare Qualität	sstufe QSV _{FZ,}	ges			E			

	Stauraumbemessung - Abbiegeströme										
		Fahrzeuge	Faktoren	Kapazität							
Zufahrt	Strom	$q_{\text{Fz},i}$	$f_{PE,i}$	C_i	S	N _S	Staulänge				
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]				
Α											
^											
В	4+5+6	10	1,000	125	95	0,26	6				
В											
С											
D	10+11+12	90	1,016	107	95	8,17	55				
D											

Vormittagsspitzenstunde

Vormittagsspitzenstunde



	Kapazitäten der Einzelströme											
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier				
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	$G_{\mathbf{i}}$	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand				
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x b z w. p _z				
	1 (2)	842	493	1,000	493	0,016	0,984	0,981				
Α	2 (1)		1800	1,000	1800	0,303	1,000					
	3 (1)	0	1600	1,000	1600	0,002	1,000					
	4 (4)	1422	163	1,000	145	0,021						
В	5 (3)	1385	156	1,000	153	0,000	1,000	0,981				
	6 (2)	533	626	1,000	626	0,002	0,998					
	7 (2)	534	700	1,000	700	0,003	0,997	0,981				
С	8 (1)		1800	1,000	1800	0,473	1,000					
	9 (1)	0	1600	1,000	1600	0,003	1,000					
	10 (4)	1384	171	1,000	168	0,042						
D	11 (3)	1384	157	1,000	154	0,000	1,000	0,981				
	12 (2)	840	430	1,000	430	0,092	0,908					

	Qualität der Einzel- und Mischströme										
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-		
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C_i	grad x _i	reserve R _i	Wartezeit w	stufe		
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV		
	1	8	1,000	493	493	0,016	485	7,4	Α		
Α	2	531	1,028	1800	1752	0,303	1221	0,0	Α		
	3	3	1,000	1600	1600	0,002	1597	0,0	Α		
	4	3	1,000	145	145	0,021	142	25,4	С		
В	5										
	6	1	1,000	626	626	0,002	625	5,8	Α		
	7	2	1,000	700	700	0,003	698	5,2	Α		
С	8	838	1,016	1800	1772	0,473	934	0,0	Α		
	9	4	1,175	1600	1362	0,003	1358	0,0	Α		
	10	7	1,000	168	168	0,042	161	22,4	С		
D	11										
	12	39	1,018	430	422	0,092	383	9,4	Α		
Α	2+3	534	1,028	1799	1751	0,305	1217	0,0	Α		
В	4+5+6	4	1,000	179	179	0,022	175	20,6	С		
С	8+9	842	1,017	1799	1769	0,476	927	0,0	Α		
D	10+11+12	46	1,015	348	343	0,134	297	12,1	В		
			erreicl	nbare Qualität	sstufe QSV _{FZ,}	ges			С		

	Stauraumbemessung - Abbiegeströme										
		Fahrzeuge	Faktoren	Kapazität							
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	C_i	S	N_S	Staulänge				
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]				
Α											
^											
В	4+5+6	4	1,000	179	95	0,07	6				
Ь											
С											
C											
D	10+11+12	46	1,015	343	95	0,46	7				
D											

	Kapazitäten der Einzelströme											
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier				
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	$G_{\mathbf{i}}$	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand				
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x bzw. p _z				
	1 (2)	661	606	1,000	606	0,008	0,992	0,982				
Α	2 (1)		1800	1,000	1800	0,609	1,000					
	3 (1)	0	1600	1,000	1600	0,003	1,000					
	4 (4)	1810	96	1,000	83	0,036						
В	5 (3)	1757	93	1,000	91	0,000	1,000	0,982				
	6 (2)	1088	317	1,000	317	0,013	0,987					
	7 (2)	1090	372	1,000	372	0,011	0,989	0,982				
С	8 (1)		1800	1,000	1800	0,366	1,000					
	9 (1)	0	1600	1,000	1600	0,008	1,000					
	10 (4)	1755	103	1,000	100	0,170						
D	11 (3)	1753	93	1,000	92	0,000	1,000	0,982				
	12 (2)	655	539	1,000	539	0,113	0,887					

	Qualität der Einzel- und Mischströme										
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-		
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	Ci	grad x _i	reserve R _i	Wartezeit w	stufe		
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV		
	1	4	1,175	606	515	0,008	511	7,0	Α		
Α	2	1086	1,010	1800	1783	0,609	697	0,0	Α		
	3	4	1,000	1600	1600	0,003	1596	0,0	Α		
	4	3	1,000	83	83	0,036	80	44,8	D		
В	5										
	6	4	1,000	317	317	0,013	313	11,5	В		
	7	4	1,000	372	372	0,011	368	9,8	Α		
С	8	649	1,016	1800	1771	0,366	1122	0,0	Α		
	9	12	1,058	1600	1512	0,008	1500	0,0	Α		
	10	17	1,000	100	100	0,170	83	43,3	D		
D	11										
	12	59	1,036	539	520	0,113	461	7,8	Α		
Α	2+3	1090	1,010	1799	1782	0,612	692	0,0	Α		
В	4+5+6	7	1,000	144	144	0,049	137	26,3	С		
С	8+9	661	1,017	1796	1766	0,374	1105	0,0	Α		
D	10+11+12	76	1,028	276	268	0,283	192	18,7	В		
			erreicl	hbare Qualität	sstufe QSV _{FZ,}	ges			D		

	Stauraumbemessung - Abbiegeströme										
		Fahrzeuge	Faktoren	Kapazität							
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	C_i	S	N _S	Staulänge				
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]				
Α											
^											
В	4+5+6	7	1,000	144	95	0,15	6				
В											
С											
O											
D	10+11+12	76	1,028	268	95	1,17	13				
D											

